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Advent of medical image digitalization leads to image processing and computer-aided diagnosis systems in numerous clinical
applications. These technologies could be used to automatically diagnose patient or serve as second opinion to pathologists. This
paper briefly reviews cervical screening techniques, advantages, and disadvantages. The digital data of the screening techniques
are used as data for the computer screening system as replaced in the expert analysis. Four stages of the computer system are
enhancement, features extraction, feature selection, and classification reviewed in detail. The computer system based on cytology
data and electromagnetic spectra data achieved better accuracy than other data.

1. Introduction

Cervical cancer is a leading cause of mortality andmorbidity,
which comprises approximately 12% of all cancers in women
worldwide according toWorld Health Organization (WHO).
In fact, the annual global statistics of WHO estimated 470
600 new cases and 233 400 deaths from cervical cancer
around the year 2000. As reported in National Cervical
Cancer Coalition (NCCC) in 2010, cervical cancer is a cancer
of the cervix which is commonly caused by a virus named
Human Papillomavirus (HPV) [1]. The virus can damage
cells in the cervix, namely, squamous cells and glandular
cells that may develop into squamous cell carcinoma (cancer
of the squamous cells) and adenocarcinoma (cancer of the
glandular cells), respectively. Squamous cell carcinoma can
be thought of as similar to skin cancer because it begins on
the surface of the ectocervix. Adenocarcinoma begins further
inside the uterus, in the mucus-producing gland cells of the
endocervix [2].

Cervical cancer develops from normal to precancerous
cells (dysplasia) over a period of two to three decades [3].
Even though the dysplasia cells look like cancer cells, they
are not malignant cells. These cells are known as cervical
intraepithelial neoplasia (CIN) which is usually of low grade,
and they only affect the surface of the cervical tissue. The
majority will regress back to normal spontaneously. Over
time, a small proportion will continue to develop into cancer.

Based on WHO system, the level of CIN growth can be
divided into grades 1, 2, and 3. It should be noted that at least
two-thirds of the CIN 1 lesions, half of the CIN 2 lesions, and
one-third of the CIN 3 lesions will regress back to normal [3].
The median ages of patients with these different precursor
grades are 25, 29, and 34 years, respectively. Ultimately, a
small proportion will develop into infiltrating cancer, usually
from the age of 45 years onwards.

In 1994, the Bethesda system was introduced to simplify
the WHO system. This system divided all cervical epithelial
precursor lesions into two groups: the Low-grade Squamous
Intraepithelial Lesion (LSIL) and High-grade Squamous
Intraepithelial Lesion (HSIL).The LSIL corresponds to CIN1,
while the HSIL includes CIN2 and CIN3 [4].

Since a period of two to three decades is needed for
cervical cancer to reach an invasive state, the incidence and
mortality related to this disease can be significantly reduced
through early detection and proper treatment. Realizing
this fact, a variety of screening tests have therefore been
developed in attempting to be implemented as early cervical
precancerous screening tools.

2. Methodology

This paper reviews 103 journal papers. The papers are
obtained electronically through 2 major scientific databases:
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Figure 1: Taxonomy of cervical cancer screening.

Table 1: Comparison of the ability of the manual cervical screening methods.

Highlighted features Cellular level Tissue level
Pap smear LBC HPV-DNA EMS VILI/VIA Cervicography Colposcopy HSDI

Low cost V∗ V∗ V V∗ V V V∗ V∗

Short time X X X X V V V V
Not Subjective X X V V X X X X
Possible in real time V V X V X V V V

Google Scholar (http://scholar.google.com.my/) and Scopus
(http://www.scopus.com/home.url). In the databases, the
IEEE and Science Direct databases will be included already.
Since there are various aspects being reviewed here, four sets
of keywords have been used. The first set contains Cervical
Cancer, Feature Extraction, and Intelligent System, which
give an overview of an intelligent system for cervical cancer
detection. The second set contains Cervical Cancer, Image
Processing, and Intelligent System. The third set is made up
of Cervical Cancer, Image Processing, and Classification.The
final set contains Cervical Cancer, Features Extraction, and
Image Processing.

In order to ensure a quality review, the academic papers
reviewed here are limited to peer reviewed journal papers.
Recent conference papers published in the year 2010 onwards
are also considered as the work is up to date and the journal
related to this work has yet to be published. However, certain
conference papers that showed excellent results or used
methods that are currently unpopular are also included to
give a more complete perspective of the work done in this
field.

3. Screening for Cervical Carcinoma

Screening programs for cervical cancer have been imple-
mented in developing countries for decades and have shown
to be effective in reducing the overall mortality from this
disease. There are two main diagnostic screening approaches
for cervical cancer as presented in Figure 1:

(1) diagnostic screening approach based on cellular level
(i.e., Pap smear, liquid based cytology (LBC), HPV-
DNA testing, and electromagnetic spectroscopies);

(2) diagnostic screening approach based on the tissue
level (i.e., visual inspection after applying Lugol’s
iodine (VILI) or acetic acid (VIA), cervicography,

colposcopy, and hyperspectral diagnostic imaging
(HSDI)).

For diagnostic screening based on cellular-level, the
specimen collections are required before it is analyzed for
the expert analysis results. In contrast, specimen collection is
not required for diagnostic screening based on tissue-level.
The expert analysis is required for cervix images visually
after applying certain liquid into the cervix surface. Detail
of standard procedure, advantages, and disadvantages for
Pap smear, LBC, HPV-DNA, VILI/VIA, cervicography, and
colposcopy techniques can be found in [5].

On the other hand, current technologies have investigated
the cervical cell from the specimen under the spectroscopy
equipment inducing an electromagnetic light. There are
several techniques utilized for cervical cancer detection:

(1) image results: fluorescent in situ hybridization (FISH)
[6–11];

(2) spectra results: Raman spectroscopy [12, 13], fluores-
cence spectroscopy [14, 15], and Fourier transform
infrared (FTIR) spectroscopy [16–24].

On the other hand, there is an alternative technique based
on tissue level known as hyperspectral diagnostic imaging
(HSDI). The surface of the cervix is scanned with ultraviolet
and white light for detecting lesions [25–27]. The scanning
is achieved one line at a time, with the scan time varying
from 12 to 24 seconds. By taking a series of scan lines, a
hyperspectral data cube is obtained. This hyperspectral data
cube contains spatial information (pixels) in two dimensions
and spectral information (bands) in the third dimension [27].
This technique produces a 3D cervix image that is easier to
interpret.

Based on the references, the techniques have several
features required for considerations as summarized inTable 1.
Each of the technique has advantages and disadvantages
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Figure 2: Comparison of analysis screening system by human expert and machine.

individually. Almost all of the techniques have on average
nonexpensive or low cost features [5, 28, 29]. However, the
EMS machines as well as microscope (for Pap smear and/or
ThinPrep) andhigh resolution camera (for colposcopy and/or
HSDI) are quite expensive to be bought for the beginning
proses as screening technique but it is cost effective in the long
run as no analysis from pathologist is required.

For the cellular-level techniques, the specimen collections
require certain duration time and the results cannot be
obtained spontaneously after specimen collection process
due to need of the next process for the expert reading (i.e.,
image, spectrum, genetic material, etc.). As for the tissue-
level, analysis of the experts could be obtained after reading
the images captured by the camera.

Based on Table 1, the HPV-DNA is not subjective due
to the genetic material for chemistry analysis on the cell.
Similarly, the EMS techniques are also not subjective. They
have quantitative results used for analysis. However, the
HPV-DNA and the VILI/VIA techniques are not possible to
interface in real time so they cannot be developed into an
intelligent system. Therefore, intelligent systems for cervical
precancerous is limited to the six possible techniques in real
time as presented in Table 1.

4. Intelligent System Approach to
Cervical Cancer

The cervical screening methods mentioned in Section 3 are
highly dependent on the skill of the experts. However, their
judgment may be subjective and often leads to considerable
variability [5]. Aside from that, the limited number of experts
and the large number of patients resulted in a long queue
for the screening process. To overcome these problems,
computational tools have been developed for automated
cancer diagnosis as drawn in Figure 2. The automated cancer
diagnosis facilitates objective judgment complementary to
expert’s decision.

Figure 2 shows the principle comparison of the computer
screening technique and the human expert. The feature’s

extraction and classification by the computer replace the anal-
ysis and decision of human experts. Currently, the require-
ment for analysis based on computer screening increases.
A number of researches were carried out specifically with
the attempts to automate the classification [30, 31]. The
results of several research to indicate that computer-imaging-
assisted screening significantly increases the detection of
cervical abnormalities compared to the manual screening
[32, 33]. Consequently, automated screening devices would
be a tremendous improvement for reducing the likelihood of
human errors.

A typical computer screening system involves four stages,
namely, data enhancement, features extraction, features selec-
tion, and classification as shown in Figure 3. Aside from
visual inspection after applying Lugol’s iodine (VILI) or acetic
acid (VIA) and HPV-DNA Testing, the data from the other
screening techniques can be digitalized and fed into the
intelligent computer screening system. These data can be
categorized as images or spectra.

In the enhancement stage, the image or spectra will be
processed in order to eliminate the noise to increase the
signal to noise ratio. For images, this stage also involves
determination of the region of interest to be segmented out
for further processing. For the images, features are extracted
either at the cellular or at the tissue-level. Basically, the
morphology, texture, shape, and/or intensity of the cell/tissue
image are extracted as features. For spectra, the features are
height of intensity, shift of wave number, and corrected area
and area under peaks of the spectra.

The main purpose of feature’s selection is to reduce the
number of features used in classification while maintaining
acceptable classification accuracy. Feature’s selection includes
methods such as sequential backward selection [34], sequen-
tial forward selection [35], sequential floating search method
[36], discriminant analysis [37], and principal component
analysis [17].

After features selection step, several classifiers can be
employed to obtain classification performance based on
the used features. Different classification results can be
performed by the different features used [38]. The aim of
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Figure 3: Intelligent cervical cancer classification systems.

Table 2: Information about cervical screening instruments.

Information PAPNET AutoPap 300 FocalPoint TIS
Input data Pap smear only Pap smear only Pap smear andThinPrep ThinPrep only
Characteristic Semiautomatic system Automatic system Automatic system Automatic system
USFDAapproval Secondary screening Primary screening Primary screening Primary screening

diagnosis step is to distinguish benignity and malignancy
or to classify different malignancy levels by making use of
extracted features. This step uses statistical analysis of the
features andmachine learning algorithms to reach a decision.
An overview of these four stages is given in Figure 3. In
the following sections, we will study each of these steps in
detail.

Nowadays, there are several instruments which have been
used to screen for abnormal cervical cells such as semi-
automated or interactive system (PAPNET) and automated
systems (AutoPap 300, FocalPoint, and ThinPrep Imaging
System (TIS)) [30, 33, 39–41]. These instruments have been
approved by United States Food and Drug Administration
(USFDA) for screening system. These instruments utilize
algorithmic image analysis to extract morphological fea-
tures. Most of these systems help the expert to perform
better diagnosis by improving cervical cell images quality so
that the morphological features can be seen easily. Table 2
summarizes the instruments to view their advantages and
disadvantages.

In fact, to build the current intelligent cervical screening
system, two types of raw data (i.e., digital images and
spectra) as presented in Section 3 can be used for the pur-
poses. To construct the intelligent system, data enhancement
(optional), features extraction, and classification steps are
applied to the raw data to obtain good screening results
approach of the human expert knowledge in some areas
of their expertise [42, 43]. Therefore, here we review some
current features extraction techniques and classification of
two types of cervical data.

4.1. Data Enhancement. As stated in earlier section, there
are two types of cervical cancer data, which are spectrum
and image as presented in Figure 4. The main aim of the
enhancement stage is to reduce noise and for the image
data to determine the area of interest as well. Due to a
considerable amount of noise that arises from the staining
process, it is usually necessary to reduce the noise prior to
the segmentation process. In some studies, noise reduction
and segmentation are carried out at the same time.
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Figure 4: Cervical data used for intelligent classification. Celluler-level features; (a) cytology image, (b) FISH image, and (c) optical spectra.
Tissue-level features; (d) cervicography, (e) colposcopy, and (f) optical image (HSDI).

The aim of noise reduction for the spectrum is to reduce
high frequency noise contained in the spectrum that can be
from either noise conducted through power lines or radiated
through the hot air in the electromagnetic spectroscopy
equipment [44]. Savitzky-Golay (SG) filter is currently being
used widely for smoothing the spectroscopy spectra [45–52].
The SG filter has boundary problems which can be solved
by using other techniques such as Binomial and Chebyshev
filters [53–55].

For image data, image noise is random (not present in the
object image) variation of brightness or color information in
images and is usually an aspect of electronic noise. The noise
is an undesirable by-product of image capture that adds
spurious and extraneous information. It can compromise the
level of detail in cervix image, and so reducing this noise can
greatly enhance the image. There are several noise reduction
techniques offered by many researchers for the automated
cervical cancerous applications system as follows.
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(i) Based on pixel intensity: thresholding [43, 56–60] and
filtering techniques [57, 60, 61].

(ii) Based on shape: mathematical morphology [58, 60,
62].

(iii) Based on the gradient: [63, 64].

Thresholding and filtering are to reduce the noise by
making use of the pixel intensities. In threshold, the intensity
histogram of an image is employed to determine the thresh-
old value where the pixels are considered to be noise. For
example, the Otsu method determines an optimal threshold
whichminimizes the within-class variance [62].This method
yields satisfactory results when the numbers of pixels in each
class are close to each other. One weakness of threshold is
that all pixels under the threshold value can be noise even
the pixel information which is important. Conversely, the
pixels over the threshold value can be information even the
pixels which are noise. In filtering, the value of a pixel is
transformed to a new value which is computed as a function
of the values of pixels located in a selected neighborhood
around this particular pixel. This is an improvement over the
threshold method.

Another method for noise reduction which reduces the
noise based shape characteristics of the input image is
to use mathematical morphology. The basic morphological
operators are the erosion and dilation of the set with a
structuring element. These two basic transformations give
two other transformations known as opening and closing.
Opening is the erosion of an image followed by the dilation;
it breaks narrow isthmuses and eliminates small objects and
sharp peaks in the image. On the other hand, closing is the
dilation of an image followed by the erosion; it fuses narrow
breaks and fills tiny holes and gaps in the image [58, 65].This
technique can enhance region of interest (ROI) of the images
perfectly by removing and adding small shape in the focused
images.

Meanwhile, the segmentation process is used to detect
the region of interest in the cervical image. The process is
a key procedure in automating computer-aided diagnostic
systems, because accurate images segmentation could help to
reduce the processing time and increase the sensitivity rates.
The segmentation method should be chosen depending on
the type of the features to be extracted. Several segmentation
techniques have been proposed and applied in cervix images
as follows.

(i) Based on shape: [57, 58, 66].
(ii) Based on color: [61, 67–70].
(iii) Based on texture: [61, 71].
(iv) Based on contour: [59, 72–74].

4.2. Features Extraction. Automated cervical cancer diagno-
sis relies on using the information obtained from (i) the
abnormalities in the cell structures (cellular-level) and (ii)
the abnormalities in the cell distribution across the tissue
(tissue-level).Many researchers have applied various captured
techniques for the automated classification of cervical cancer.
The techniques are cytology, FISH, and electromagnetic

scanner for cellular level while cervicography, colposcopy,
andHSDI are used for tissue level. Features are then extracted
from data of the techniques as presented in Table 3.

The features are extracted to quantify these changes in
a given tissue. In order to measure the abnormalities at the
cellular/tissue level, size and shape, ratio, topology, texture,
and color intensity can be used as features listed in Table 3.
The features are extracted and represented by a value to be
used in the intelligent system.

4.2.1. Size and Shape Feature. A cell includes a nucleus
surrounded by cytoplasm. As a traditional way, a pathologist
evaluates the cytoplasm and the background of slide. The
abnormality features are described as size (i.e., there is an
increased size of the nucleus compared to the cytoplasm),
shape (i.e., smooth, circular, and oval outline belongs to a
normal nucleus), texture (i.e., rough textures belong to an
abnormal nucleus), chromaticity (i.e., abnormal nucleuses are
darker than normal ones) [62]. The quantification of these
properties enables differentiating the malignant cells from
those of benign and normal.

The size is expressed by the radius, area, and perimeter
of the cell. Suppose that 𝑆 = {𝑠

1
, . . . , 𝑠

𝑛
} is a set of the

boundary points of a segmented cell/nucleus and 𝐶 is the
centroid of these boundary points, a sample of a nucleus with
its boundary points.On the other hand, the shape is expressed
by the length of the major and minor axes, symmetry, and
circularity. The size and shape features defined on the set of
the boundary points, S, are given as follows.

(i) Radius r is defined as the average length of the radial
lines towards every boundary point. Mathematically,

𝑟 =
∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖𝐶
󵄨󵄨󵄨󵄨

𝑛
. (1)

(ii) Area is the number of pixels within the boundary.
(iii) Perimeter P is measured as the sum of the distances

between every consecutive boundary point. Mathe-
matically,

𝑃 =
󵄨󵄨󵄨󵄨𝑠𝑛𝑠1
󵄨󵄨󵄨󵄨 +

𝑛−1

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖𝑠𝑖+1
󵄨󵄨󵄨󵄨 . (2)

(iv) Major axis is the longest chord that goes through the
center and minor axis is the line that is perpendicular
to the major axis and that goes through the center.

(v) Circularity is quantified by drawing chords between
nonadjacent boundary points and checking whether
or not the boundary points lie inside these chords.

Several researchers have identified capability of the size and
shape features to classify the cervix using the cytology image
[72, 73, 75], FISH image [60, 76, 77], and electromagnetic
spectrum [24, 78]. Besides these features, the ratio of the same
feature for different parts of a biological structure is used as
another feature. For example, the nuclear area/cytoplasm area
ratio [73] and the corrected area under peak A/under peak B
ratio [78] are such a kind of features.
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Table 3: The list of features that are extracted by different data.

Cellular-level based features Tissue-level based features

Cytology FISH Electromagnetic
spectra Cervicography Colposcopy HSDI image

Size

(i) Area of Cell [72],
(ii) Area of Nucleus
[72, 73, 75]
(iii) Area of Cytoplasm
[75].

(i) Area for each
coloured spot
[60, 76, 77].
(ii) Radius of each
coloured spot [60],

Shift of peak
frequency [24]

Perimeter of
anatomical features
[63, 79]

Perimeter of
anatomical
features [80]

Perimeter of
acetowhite [27]

Shape

(i) Circularity of
cytoplasm [75]
(ii) Circularity of
nucleus [24, 75]

Circularity of each
coloured spot
[60, 77].

(i) Circularity of
cervix [66]
(ii) Circularity or
elliptical shape of
Os region [66]

Ratio

(i) Percentage of cell
coverage [72]
(ii) Ratio of nucleus to
cytoplasm size [72, 75]
(iii) Percentage of empty
cells [72].

(i) Ratio of peak
intensities [24, 78]
(ii) Ratio of area
under peaks [78]

Topology

(i) Distribution of cell
[72]
(ii) Distribution of
nucleus [72],

(i) Distances between
the same color spots
[60, 77].
(ii) Distance between
the centers of the two
spots [60, 77].
(iii) Center of gravity
for each coloured spot
[60],
(iv) Number of red
and green spots
[60, 76, 77].

Texture
(i) Multinucleus cells
[72],
(ii) Halos in cells [72].

Acetowhite region
[86–88],

Acetowhite
region
[61, 71, 89–91]

Color
intensity

(i) Cell [72, 83]
(ii) Nucleus [73]
(iii) Cytoplasm [73]

Intensity of each
coloured spot [60].

Anatomical
features
[86, 93, 94]

Anatomical
features
[61, 67, 91, 95–97].

From cytology images as presented in Figure 4(a), the
specific features as listed inTable 3 (i.e., size, shape, and ratio),
namely, average nucleus size [72, 73, 75], average cytoplasm
size [75], average cell size [72], cytoplasm circularity [75],
nucleus circularity [24, 75], percentage of cell coverage [72],
ratio of a nucleus to cytoplasm size [72, 75], and percentage
of empty cells [72], are partially used to be an input attribute
to the classification system.

For FISH image, the features from labeled biomarker
spots of chromosomes 3 (red spot) and X (green spot) are the
size of each colored spot [60, 76, 77], the effective radius of
each red or green spot computed as the radius of a circle that
had the same size as the colored spot [60, 76, 77], and the
circularity of each colored spot [60, 77].

Meanwhile, from the electromagnetic spectra, the fea-
tures are shift of peak frequency [24], absorbance value,
and area under the spectra. For the absorbance fea-
tures, the corrected absorbance value and ratio of the

absorbance/corrected absorbance values for certain regions
in a spectrum are derived from the features [24, 78]. Then,
from area under the spectra, the features can be taken as
corrected area and ratio of the area/corrected area values for
certain regions in one spectrum [78].

At the case of tissue-level image, the shape feature is
applied to differentiate the cervix images. The anatomical
region features of the cervix (as marked by the medical
experts) can be characterized by their elliptical or circular
shapes; hence, the ellipse and the circle are chosen for
the shape models. A vast amount of work was done to
embed prior-shape information into a segmentation task. A
popular approach is to use prior models based on allowable
deformation of a template shape [66]. In addition, for tissue
level case, the AW perimeter obtained after Lugol’s solutions
was assessed by examining the topography of the perimeter
lines cut across the image contour with lines positioned in
radial direction [27, 63, 79, 80].
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Several techniques are applied to extract the size and
shape features:

(i) thresholding technique [60, 62, 77, 81];
(ii) clustering technique [70, 73];
(iii) fuzzy technique [69];
(iv) wavelet technique [82, 83];
(v) statistic techniques [13, 22, 78, 84].

At cellular-level, the size and shape features in cytology
images are extracted using thresholding [62], clustering [70,
73], fuzzy [69], and wavelet techniques [83]. In the FISH
images, the features are extracted using thresholding [60,
77, 81]. Besides, in the electromagnetic spectra, the features
are extracted using statistical techniques [13, 22, 78, 84] and
wavelet technique [82]. At tissue-level, perimeters were ana-
lyzed in terms of their topology changes such as perimeter’
peaks [80]; van Raad et al. [68] used landmark technique
of the closed contours to extract the perimeter features
which differentiate normal and abnormal cervix. In theHSDI
image case, the perimeter feature is extracted using landmark
technique after an enhancement process [27]. Automated
landmark extraction, including the extraction of the cervix
boundary, detection of the Os (one of the anatomic region),
and detections (and elimination) of specular reflections are
used by [63, 79, 85].

4.2.2. Topology Features. The topological features provide
information on the structure of a tissue by quantifying the
spatial distributionof its cells. For that, this approach encodes
the spatial interdependency of the cells prior to the feature
extraction. The features are applied for cellular-level case.
The specific features implemented for cytology images are
distribution of cell [72] and distribution of the nucleus [72],
while the distances between the same color spots [60, 77],
the distance between the centers of the two spots [60, 77],
the gravity center of each colored spot [60], and the total
number of red spots and green spots [60, 76, 77] have
been implemented in the FISH images. The thresholding
techniques are applied to extract the features in the cellular-
level case [60, 72].

4.2.3. Textural Features. Texture is a connected set of pixels
that occurs repeatedly in an image. It provides information
about the variation in the intensity of a surface by quantifying
properties such as smoothness, coarseness, and regularity. At
the cellular level, the existence of multinuclear cells [72] and
the existence halos in cells [72] are used as features in the
cytology image. Meanwhile, at the tissue level, the texture
features are extracted from the AW region of the cervix image
[61, 71, 86–91]. The texture is formed after giving the acetic
acid or Lugol’s iodine to the cervix surface as a sign of the
abnormality.

There are several techniques applied for extracting the
textural features in cervix images as follows.

(i) Wavelet technique [89].
(ii) Mathematical morphological operations [71, 90].

(iii) Clustering technique [86].
(iv) Thresholding technique [62, 88].

At the cervix image of tissue-level, van Raad [89] demon-
strated Gabor wavelet for extracting the textural features
which outline the area of metaplastic changes, known as the
transformation zone (TZ). The performances of the Gabor
wavelet scheme achieve close to 80% accuracy in discrimi-
nation on the ROI. On the other hand, textural features (i.e.,
mosaic pattern) within the AW region are obtained from
skeletonized vascular structures uniquely. The skeletonized
vascular structures represented typical vascularity embedded
in the normal and abnormal regions extracted by a series
of mathematical morphological operations [71]. The series
of mathematical morphological operations are gray-scale
method, top hat transform, morphological opening with
a rotating structuring element (ROSE), thresholding, and
skeletonizing. Similarly, the textural features are extracted
based on iterative morphological operations with various
sizes of structural elements, in combination with adaptive
thresholding [90]. Furthermore, combination of mathemat-
ical morphology and clustering based on Gaussian mixture
model (GMM) is proposed to extract the textural features in
the cervix image [86]. The algorithms are used to segment
macro regions of the textural cervix images. Thresholding
technique is used to segment tissues and nucleus as the
texture for each application, respectively [62, 88, 92].

4.2.4. Color Intensity Based Features. The color intensity-
based features are extracted from the gray-level or color
histogram of the image.This type of features does not provide
any information about the spatial distribution of the pixels.
The intensity histogram in a cell is employed to define
features. In the case of cellular level images, the difference
of color intensity can be used as features for the cancerous
cells [72, 73]. Cytology image has a relatively darker color
intensity composition than normal cells. The distinguishable
patterns can be analyzed using the corresponding image’s
color intensity histogram [83]. Meanwhile, another feature
to differentiate the abnormality of cervix using FISH image
is the average intensity of each colored spot [60]. At the
case of tissue level images, the changes in color and intensity
correlate closely with changes in tissue type, severity of
cervical neoplasia, and vessel patterns [61, 67, 86, 91, 93–97].

Several techniques used for extracting the intensity fea-
tures are as follows.

(i) Clustering technique [67, 86, 95, 97].
(ii) Watershed technique [93, 94].
(iii) Statistical technique [96].

van Raad [67] used a clustering technique (i.e., GMM)
based MAP algorithm probability model in cervical images
to extract color information features belonging to each of the
tissue types in the cervix, such as the cervical canal (CC),
the transformation zone (TZ), the squamous epithelium (SE),
and the artifact named specular reflection (SR). Besides,
mean-shift clustering is used to extract color and texture
features of a tissue type [95]. Clustering based on the GMM
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Table 4: The list of classifiers that are used by different studies.

Cellular-level based features Tissue-level based features

Cytology FISH Electromagnetic
spectra Cervicography Colposcopy HSDI image

Artificial
Neural
network

(3/1241/10/78.7)
[56], (2/400/10/99)
[72], (3/550/4/97.5)
[73], (5/78/5/91.4)

[75].

(2/361/13/74.4) [84],
(2/201/3/87) [82],

(3/780/22/97.4) [78].
(2/283/7/95.8) [80].

Support
vector
machine

(3/63/10/72) [116]

Logistic
regression (4/145/—/88) [12]

𝐾-nearest
neighbors

(2/283/7/68.9)
[80], (2/48/10/76.5)

[97].

(7/371/5/95.96)
[117]

Linear dis-
criminant
analysis

(5/230/15/60.4)
[85].

(2/324/—/78) [118],
(2/275/8/96.4) [22],
(2/150/5/99.5) [13],
(4/800/7/90) [24],
(2/92/3/97.6) [119]

(2/100/—/78.5)
[88]. (2/40/4/87.2) [61].

Decision
trees

(3/1241/10/77) [56],
(—/61/2/96.7)

[120].

(2/325/—/93.6)
[60]

(2/211/—/78)
[94].

(2/29/—/86) [121],
(2/99/—/88.5)

[96].
The values given in bracket are number of classes/number of data/number of features used/accuracy.

is used in a joint color and geometric feature space to
segment macro regions [86]. Similarly, [97] used a clustering
technique (i.e., 𝐾-means clustering (KMC)) to generate an
anatomical feature map for each cervical tissue type. The
tissue regions defined by the anatomical feature map are
further clustered into subregions. Watershed technique is
used for a specific focus on the detection of lesion regions
in uterine cervix images [93, 94]. Meanwhile, the spatial
change of the AW lesion is extracted using color and texture
information based on an opacity index that indicates the
grades of temporal change [96].

As presented in Figure 4, possibility of the ratio and
texture features can be extracted from FISH image for future
works. As listed in Table 3, the features of the FISH image
are area and radius for each colored spot. The ratio of the
area for one colored spot and other colored spot can be
possibly extracted.The ratio of the radius of one colored spot
and other colored spots can be also possibly extracted. The
texture of one FISH image integrally can be also extracted to
differentiate the abnormality of the images.

4.3. Features Selection. After all the possible features for clas-
sification had been extracted, the selection of significant or
dominant features can be conducted. Besides feature’s extrac-
tion systems, the classification performance also depends
on the selected features and the classification technique
used. Feature selection is an important stage in classification,
especially if it involves a large dimension of input features.
By applying this feature selection stage, the original high

dimensional inputs could be transformed and reduced into
new lower dimensional features [98].

Generally, all possible extracted features can be used as
the inputs for a classification system. However, irrelevant or
noisy features could deteriorate between classes and increase
the overlap in a non-linear manner. The noisy features can
mix up the boundaries for the generalization performance of
the classification system [99]. A clasifier with fewer inputs
needs fewer weights to be adjusted, leading to better gener-
alization and faster training [100]. Adding newer features can
significantly lead to a reduction in the performance of the
classification system [100].

Many researchers in computer vision based spectroscopy
data applied the features selection techniques for cervical cells
and other cell features [13, 51, 58, 84, 98, 101–110]. Generally,
good performances in classification are achieved after apply-
ing the features selection techniques. Since the spectral data is
heavily redundant, the selection of the significant wavelength
as features in this case is vital.

For the image processing application, discriminant anal-
ysis (DA) and principle component analysis (PCA) are
methods commonly used to find a linear combination of
features which characterizes or separates two or more classes
of objects or events. The resulting combination may be used
as a linear classifier or, more commonly, for dimensionality
reduction before later classification [111].

The DA works by creating a new variable called the
discriminant function score which is used to predict to which
group a case belongs. The discriminant function scores are
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computed similarly to factor scores (i.e., using eigenvalues).
The computations find the coefficients for the independent
variables (features) that maximize the measure of distance
between the groups defined by the dependent variable. The
disadvantages of the DA are the distribution of distance
matrices in the same class to be singular if the dimension of
the data is much higher than the number of training samples
[112].

Besides, the PCA is mathematically defined as an orthog-
onal linear transformation that transforms the data to a
new coordinate system. In the PCA, the greatest variance
by any projection of the data comes to lie on the first
coordinate (called the first principal component), the second
greatest variance on the second coordinates, and so on. The
first principal component corresponds to a line that passes
through the multidimensional mean and minimizes the sum
of squares of the point’s distances from the line. The second
principal component corresponds to the same concept after
all correlations with the first principal component have been
subtracted out from the points.

There are several researchers in cervical cancer appli-
cation who use the PCA [13, 17, 113]. In their researches,
the PCA is used as dimensionality reduction to improve the
classification performance and decrease the training time of
classifier. However, the disadvantages of the PCA consist in
the fact that the directionsmaximizing variance donot always
maximize information. In case, a great disadvantage of PCA
is that it does not consider any class information [114]. This
can lead to a loss of important discriminating information. In
fact, the analysis showed that it was practically impossible to
improve the classification error by thismethod [114]. Another
disadvantage of the PCA is that it has high memory and
computational requirements [115].

4.4. Classification. The effectiveness of the automatic cervical
precancerous screening system is evaluated in this section.
The classifiers mostly used for cervical cancer study in detail
are artificial neural networks or neural network (NN) [56, 72,
73, 75, 78, 80, 82, 84], support vector machine (SVM) [116],
logistic regression [12],𝐾-nearest neighborhood (KNN) [80,
97, 117], linear discriminant analysis (LDA) [13, 22, 24, 61, 85,
88, 118, 119], and decision trees [56, 60, 94, 96, 120, 121], as
listed in Table 4.The performances of the classifiers generally
showed good results as presented in Figure 5.

Generally, each type of classifiers can be employed for
all types of data. For example, the FISH or cervicography
data can be classified using NN, SVM, logistic regression,
KNN, LDA, and decision tree. However, it is important to
know the advantages and disadvantages of the classifiers that
might be considered as alternatives. Logistic regression is
attractive for probability prediction, because it is mathemat-
ically constrained to produce probabilities in the range [0, 1]
and generally converges on parameter estimates relatively
easily [122]. The disadvantages of the logistic regression are
not designed to deal with high-dimensional data and cannot
approximate any smooth polynomial function, regardless of
the order of the polynomial or the number of interaction
terms [122].
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Figure 5: Performances of six classifiers generally for cervical
precancerous data.

SVM’s execution speed is very fast and there are no
parameters to tune except the constant C. It is remarkably
intolerant of the relative sizes of the number of training
examples of the two classes. Since the technique is not directly
trying to minimize the error rate, but trying to separate the
patterns in high dimensional space, the result is that SVM
is relatively insensitive to the relative numbers of each class.
The possible disadvantages are large memory requirement
[123] and the training time can be very large if there are large
numbers of training examples [124].

Meanwhile, the NN architecture is initially not structured
and the learning algorithm is responsible for the extraction
of the regularities present in the data by finding a suitable
set of synapses during the process of observation of the
examples.Thus,NNs solve problems by self-learning and self-
organization [125]. However, the neural network required
long training time, and the results dependon the initialization
parameters. It consisted of an arbitrary number of layers,
and parameters [122]. Different combinations of number of
hidden neurons, learning rate, momentum rate, activation
function, epoch size, and initial weights have to be tried in
order to produce better results [125].

Decision tree is relatively easy to interpret and to imple-
ment. Like SVMs and NNs, many methods for decision trees
do not provide a probability of class membership, although
some variants, in particular, classification and regression
trees, do provide such probabilities. However, performance
of all decision trees is dependent on both their method of
construction and the amount of pruning (removal of highly
specific nodes) performed [122].

KNN and LDA are methods implemented in numerous
programs and easy to be implemented as classification tools.
Both techniques have direct analytical solution and very
good at detecting global phenomena (whereas decision tree
detects local phenomena). However, they are simply defined
and implemented, especially if there is insufficient data to
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adequately define sample means and covariance matrices.
Both techniques only detect linear phenomena and are
sensitive to individuals outside the norm.

From Table 4 and Figure 5, the NN results showed
constantly higher performance results in terms of accuracy
than the other classifiers. The result ranges are 78.7–99% of
accuracy.Mostly, the accuracy results are higher than 90%. In
detail, [56] achieved 78.7% of accuracy in their preliminary
study in classifying more than 1000 data to be two classes.
[72, 73, 75, 78, 80] successfully achieved more than 90%
of accuracies (i.e., 99%, 97.5%, 91.4%, 95.8%, and 97.4%) to
classify 400 data to be 2 classes, 550 data to be 3 classes, 78
data to be 5 classes, 780 data to be 3 classes, and 283 data to
be 2 classes.

As presented in Table 4, six types of data are used for clas-
sification purpose. All data have good capability to be used as
intelligent classification data.The classification performances
of the data are spread from range 60 to 99% of accuracies.
Overall performance shows that cytology features and the
electromagnetic spectra features give the higher accuracy
than the other data. Many of the researchers that use the data
gain accuracy values more than 90% such as performances
using cytology data: 96.7% [120], 99% [72], 97.5% [73], and
91.4% [75] and performances using electromagnetic spectra
data: 96.4% [22], 99.5% [13], 90% [24], 97.6% [119], and 97.4%
[78]. Only few have performance less than 90% of accuracy.

The cytology combined with neural network gives the
accuracy of up to 99% of accuracy to classify 400 data to
be 2 classes, followed by neural network using the electro-
magnetic spectra features at 97.4% for classifying 780 data
to be 3 classes. Greatly, the electromagnetic spectra features
could achieve the higher accuracy only using discriminant
analysis at 99.5% of accuracy. Therefore, based on Table 4,
the better cervix data used for the automated diagnosis are
the cytology and the electromagnetic spectra features and
the best classifier used for the automated diagnosis system is
neural network.

As reviewed, the intelligent classification system for
cervical precancerous cells has been attempted and devel-
oped using two types of input attributes; cervical cell/tissue
images and cervical cell spectra. Therefore, the systems
have employed image and signal processing techniques for
extracting features as the input attributes, respectively. Both
systems could classify the cervical precancerous cells with
high performances. The applications of image and spectra
processing and classifier for cervical precancerous classi-
fication have been developed by many researchers in the
world. The screening techniques have been proven to have
better performance than the manual techniques. Thus, the
intelligent classification system for cervical precancerous
using the image and/or optical spectra as input is believed to
have better classification performance and could be used as a
second opinion to pathologists.

5. Summary

Six types of cervical precancerous data (i.e., cytology,
FISH, electromagnetic spectra, cervicography, colposcopy,

and HSDI) generally can be used for the intelligent screening
of cervical cancer. Computer screening system for cervical
cancer based on cellular level data, namely, cytology, FISH,
and electromagnetic spectroscopy, achieved better results as
compared to tissue level data such as cervicography and
colposcopy.

Classification tools (i.e., ANN, SVM, logistic regression,
KNN, LDA, and decision tree) generally can achieve good
performances to classify the cervical precancerous data. The
screening systems based on neural network technique are
frequently applied due to the better results and potential of
the technique to build a real time system.

The long training time of the neural network can be
reduced by using the features selection stage in the computer
screening system. The dimensionality reduction popularly
done by using discriminant analysis andprincipal component
analysis can be developed using new techniques that can be
proposed as future work in this research field. The developed
techniques will reduce the training time and improve the
classification result of the neural network.
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